Муниципальное бюджетное общеобразовательное учреждение «Средняя школа №100»

РАБОЧАЯ ПРОГРАММА Астрономия 10 КЛАСС

Планируемые результаты освоения учебного предмета «Астрономия»

Личностные результаты:

- в ценностно-ориентационной сфере чувство гордости за российскую физическую науку, гуманизм, положительное отношение к труду, целеустремленность;
- в трудовой сфере готовность к осознанному выбору дальнейшей образовательной траектории;
- в познавательной (когнитивной, интеллектуальной) сфере умение управлять своей познавательной деятельностью.

Метапредметные результаты:

- использование умений и навыков различных видов познавательной деятельности, применение основных методов познания (системно-информационный анализ, моделирование и т.д.) для изучения различных сторон окружающей действительности;
- использование основных интеллектуальных операций: формулирование гипотез, анализ и синтез, сравнение, обобщение, систематизация, выявление причинно-следственных связей, поиск аналогов;
- умение генерировать идеи и определять средства, необходимые для их реализации;
- умение определять цели и задачи деятельности, выбирать средства реализации целей и применять их на практике;
- использование различных источников для получения физической информации, понимание зависимости содержания и формы представления информации от целей коммуникации и адресата;
- овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умения предвидеть возможные результаты своих действий;
- развитие монологической и диалогической речи, умение выражать свои мысли и выслушивать собеседника, понимать его точку зрения;
- умение работать в группе с выполнением различных социальных ролей, отстаивать свои взгляды, вести дискуссию.

Предметные результаты

Предметные результаты освоения темы «Введение» позволяют:

- воспроизводить сведения по истории развития астрономии, ее связях с физикой и математикой;
- использовать полученные ранее знания для объяснения устройства и принципа работы телескопа.

Предметные результаты изучения темы «Практические основы астрономии» позволяют:

- воспроизводить горизонтальную и экваториальную системы координат;
- воспроизводить определения терминов и понятий (созвездие, высота и кульминация звезд и Солнца, эклиптика, местное, поясное, летнее и зимнее время);
- объяснять необходимость введения високосных лет и нового календарного стиля;
- объяснять наблюдаемые невооруженным глазом движения звезд и Солнца на различных

географических широтах, движение и фазы Луны, причины затмений Луны и Солнца;

- применять звездную карту для поиска на небе определенных созвездий и звезд.

Предметные результаты освоения темы «Строение Солнечной системы» позволяют:

- воспроизводить исторические сведения о становлении и развитии гелиоцентрической системы мира;
- воспроизводить определения терминов и понятий (конфигурация планет, синодический и сидерический периоды обращения планет, горизонтальный параллакс, угловые размеры объекта, астрономическая единица);
- вычислять расстояние до планет по горизонтальному параллаксу, а их размеры по угловым размерам и расстоянию;
- формулировать законы Кеплера, определять массы планет на основе третьего (уточненного) закона Кеплера;
- описывать особенности движения тел Солнечной системы под действием сил тяготения по орбитам с различным эксцентриситетом;
- объяснять причины возникновения приливов на Земле и возмущений в движении тел Солнечной системы;
- характеризовать особенности движения и маневров космических аппаратов для исследования тел Солнечной системы.

Предметные результаты изучения темы «Природа тел Солнечной системы» позволяют:

- формулировать и обосновывать основные положения современной гипотезы о формировании всех тел Солнечной системы из единого газопылевого облака;
- определять и различать понятия (Солнечная система, планета, ее спутники, планеты земной группы, планеты-гиганты, кольца планет, малые тела, астероиды, планеты-карлики, кометы, метеороиды, метеоры, болиды, метеориты);
- описывать природу Луны и объяснять причины ее отличия от Земли;
- перечислять существенные различия природы двух групп планет и объяснять причины их возникновения;
- проводить сравнение Меркурия, Венеры и Марса с Землей по рельефу поверхности и составу атмосфер, указывать следы эволюционных изменений природы этих планет;
- объяснять механизм парникового эффекта и его значение для формирования и сохранения уникальной природы Земли;
- описывать характерные особенности природы планет-гигантов, их спутников и колец;
- характеризовать природу малых тел Солнечной системы и объяснять причины их различий;
- описывать явления метеора и болида, объяснять процессы, которые происходят при движении тел, влетающих в атмосферу планеты с космической скоростью;
- описывать последствия падения на Землю крупных метеоритов;
- объяснять сущность астероидно-кометной опасности, возможности и способы ее предотвращения.

Предметные результаты освоения темы «Солнце и звезды» позволяют:

- определять и различать понятия (звезда, модель звезды, светимость, парсек, световой год);
- характеризовать физическое состояние вещества Солнца и звезд и источники их энергии;
- описывать внутреннее строение Солнца и способы передачи энергии из центра к поверхности;
- объяснять механизм возникновения на Солнце грануляции и пятен;
- описывать наблюдаемые проявления солнечной активности и их влияние на Землю;
- вычислять расстояние до звезд по годичному параллаксу;
- называть основные отличительные особенности звезд различных последовательностей на диаграмме «спектр светимость»;
- сравнивать модели различных типов звезд с моделью Солнца;
- объяснять причины изменения светимости переменных звезд;

- описывать механизм вспышек Новых и Сверхновых;
- оценивать время существования звезд в зависимости от их массы;
- описывать этапы формирования и эволюции звезды;
- характеризовать физические особенности объектов, возникающих на конечной стадии эволюции звезд: белых карликов, нейтронных звезд и черных дыр.

Предметные результаты изучения темы «Строение и эволюция Вселенной» позволяют:

- объяснять смысл понятий (космология, Вселенная, модель Вселенной, Большой взрыв, реликтовое излучение);
- характеризовать основные параметры Галактики (размеры, состав, структура и кинематика);
- определять расстояние до звездных скоплений и галактик по цефеидам на основе зависимости «период — светимость»;
- распознавать типы галактик (спиральные, эллиптические, неправильные);
- сравнивать выводы А. Эйнштейна и А. А. Фридмана относительно модели Вселенной;
- обосновывать справедливость модели Фридмана результатами наблюдений «красного смещения» в спектрах галактик;
- понимать сущность закона Хаббла;
- интерпретировать обнаружение реликтового излучения как свидетельство в пользу гипотезы Горячей Вселенной;
- классифицировать основные периоды эволюции Вселенной с момента начала ее расширения;
- интерпретировать современные данные об ускорении расширения Вселенной как

действия антитяготения «темной энергии» — вида материи, природа которой еще неизвестна.

Предметные результаты освоения темы «Жизнь и разум во Вселенной» позволяют:

- систематизировать знания о методах исследования и современном состоянии проблемы существования жизни во Вселенной.

Содержание учебного предмета «Астрономия»			
Тема	Содержание темы		
Введение	Предмет астрономии (что изучает астрономия, роль		
	наблюдений в астрономии, связь астрономии с другими		
	науками, значение астрономии).		
Практические основы	Звездное небо (что такое созвездие, основные созвездия).		
астрономии	Изменение вида звездного неба в течение суток (небесная сфера		
	и ее вращение, горизонтальная система координат, изменение		
	горизонтальных координат, кульминации светил). Изменение		
	вида звездного неба в течение года (экваториальная система		
	координат, видимое годичное движение Солнца, годичное		
	движение Солнца и вид звездного неба). Способы определения		
	географической широты (высота Полюса мира и географическая		
	широта места наблюдения, суточное движение звезд на разных		
	широтах, связь между склонением, зенитным расстоянием и		
	географической широтой).		
	Движение и фазы Луны. Затмения Солнца и Луны.		
	Основы измерения времени (связь времени с географической		

Строение Солнечной системы

долготой, системы счета времени, понятие о летосчислении)

Видимое движение планет (петлеобразное движение планет, конфигурации планет, сидерические и синодические периоды обращения планет). Развитие представлений о Солнечной системе (астрономия в древности, геоцентрические системы мира, гелиоцентрическая система мира, становление гелиоцентрического мировоззрения). Законы Кеплера - законы движения небесных тел (три закона Кеплера), обобщение и уточнение Ньютоном законов Кеплера (закон всемирного тяготения, возмущения, открытие Нептуна, законы Кеплера в формулировке Ньютона).

Определение расстояний до тел Солнечной системы и размеров небесных тел (определение расстояний по параллаксам светил, радиолокационный метод, определение размеров тел Солнечной системы).

Природа тел Солнечной системы

Общие характеристики планет. Солнечная система как комплекс тел, имеющих общее происхождение.

Система "Земля - Луна". Природа Луны (физические условия на Луне, поверхность Луны, лунные породы).

Планеты земной группы (общая характеристика атмосферы, поверхности).

Планеты-гиганты (общая характеристика, особенности строения, спутники, кольца).

Малые тела Солнечной системы. Астероиды и метеориты (закономерность в расстояниях планет от Солнца и пояс астероидов, движение астероидов, физические характеристики астероидов, метеориты).

Кометы и метеоры (открытие комет, вид, строение, орбиты, природа комет, метеоры и болиды, метеорные потоки).

Солнце и звезды

Общие сведения о Солнце (вид в телескоп, вращение, размеры, масса, светимость, температура Солнца и состояние вещества на нем, химический состав).

Строение атмосферы Солнца (фотосфера, хромосфера, солнечная корона, солнечная активность). Источники энергии и внутреннее строение Солнца (протон - протонный цикл, понятие о моделях внутреннего строения Солнца).

Солнце и жизнь Земли (перспективы использования солнечной энергии, коротковолновое излучение, радиоизлучение, корпускулярное излучение, проблема "Солнце - Земля").

Расстояние до звезд (определение расстояний по годичным параллаксам, видимые и абсолютные звездные величины). Пространственные скорости звезд (собственные движения и тангенциальные скорости звезд, эффект Доплера и определение лучевых скоростей звезд). Физическая природа звезд (цвет, температура, спектры и химический состав, светимости, радиусы, массы, средние плотности). Связь между физическими характеристиками звезд (диаграмма "спектр-светимость", соотношение "масса-светимость", вращение звезд различных спектральных классов).

Двойные звезды (оптические и физические двойные звезды, определение масс звезд из наблюдений двойных звезд,

невидимые спутники звезд). Физические переменные, новые и			
сверхновые звезды (цефеиды, другие физические переменные			
звезды, новые и сверхновые)			

Строение и эволюция Вселенной

Наша Галактика (состав - звезды и звездные скопления, туманности, межзвездный газ, космические лучи и магнитные поля; строение Галактики, вращение Галактики и движение звезд в ней; радиоизлучение). Другие галактики (открытие других галактик, определение размеров, расстояний и масс галактик; многообразие галактик, радиогалактики и активность ядер галактик, квазары).

Метагалактика (системы галактик и крупномасштабная структура Вселенной, расширение Метагалактики, гипотеза "горячей Вселенной", космологические модели Вселенной). Происхождение и эволюция звезд (возраст галактик и звезд, происхождение и эволюция звезд).

Происхождение планет (возраст Земли и других тел Солнечной системы, основные закономерности в Солнечной системе, первые космогонические гипотезы, современные представления о происхождении планет).

Жизнь и разум во Вселенной (эволюция Вселенной и жизнь, проблема внеземных цивилизаций).

Тематическое планирование

№	Тема урока	Количество
урока		часов
	Введение в астрономию	2
1	Предмет астрономии	1
2	Наблюдения – основа астрономии	1
	Практические основы астрономии	7
3	Звезды и созвездия	1
4	Небесные координаты и звездные карты	1
5	Видимое движение звезд на различных широтах	1
6	Годичное движение Солнца по небу. Эклиптика	1
7	Движение и фазы Луны. Затмения Солнца и Луны	1
8	Время и календарь	1
9	Контрольная работа № 1 «Практические основы астрономии»	1
	Строение Солнечной системы	6
10	Развитие представлений о строении мира	1
11	Петлеобразное движение планет, конфигурации планет, сидерические и синодические периоды обращения планет	1
12	Законы движения планет Солнечной системы. Законы Кеплера	1
13	Определение расстояний до тел Солнечной системы и размеров небесных тел	1

14-15	Движение небесных тел под действием сил	2
	тяготения	
	Природа тел Солнечной системы	6
16	Общие характеристики планет. Солнечная	1
	система как комплекс тел, имеющих общее	
	происхождение	
17	Система Земля-Луна	1
18	Планеты земной группы	1
19	Планеты-гиганты	1
20	Малые тела Солнечной системы. Карликовые	1
	планеты	
21	Контрольная работа № 2 «Солнечная	1
	система»	
	Солнце и звезды	6
22	Солнце – ближайшая звезда	1
23	Расстояния до звезд	1
24	Характеристики излучения звезд	1
25	Массы и размеры звезд	1
26	Модели звезд	1
27	Переменные и нестационарные звезды	1
	Строение и эволюция Вселенной	5
28	Наша Галактика	1
29	Межзвездная среда	1
30	Движение звезд в Галактике	1
31	Другие звездные системы - галактики	1
32	Основы современной космологии	1
33	Итоговый контроль	1